The impact of battery energy storage for renewable energy power grids in Australia
Felix Keck,
Manfred Lenzen,
Anthony Vassallo and
Mengyu Li
Energy, 2019, vol. 173, issue C, 647-657
Abstract:
Electrical energy storage (EES) has the potential to enable a transition to clean energy in the future as it brings flexibility into the electricity network. Uncertainties exist around EES regarding technology, costs, business models and market structures but experts agree on EES being beneficial. This study offers an economic analysis of the role of EES in low-carbon electricity supply. A GIS-supported hourly simulation study of Australia assesses the impact of adding EES to wind and solar generation on levelised cost of electricity (LCOE), installed capacity, generation mix and energy spillage. The study finds that EES deployment is able to lower LCOE in scenarios with high penetration of renewable sources. In the case study of Australia, it is found that EES between 90 and 180 GWh capacity can be economic for cost levels below 1,000 AU$ kWh−1. In addition, the study finds that EES can reduce LCOE by 13–22%, reduce installed capacity by up to 22%, and reduce spilled energy by up to 76%. It is shown that the generation mix is highly influenced by the magnitude of EES deployed.
Keywords: Electrical energy storage (EES); Renewable energy; Simulation; Levelised cost of electricity (LCOE); Installed capacity; Spilled energy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219302427
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:173:y:2019:i:c:p:647-657
DOI: 10.1016/j.energy.2019.02.053
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().