EconPapers    
Economics at your fingertips  
 

Selective low temperature chemical looping combustion of higher alkanes with Cu- and Mn- oxides

Fatih Güleç, Will Meredith, Cheng-Gong Sun and Colin E. Snape

Energy, 2019, vol. 173, issue C, 658-666

Abstract: Chemical looping combustion (CLC) of n-hexadecane and n-heptane with copper and manganese oxides (CuO and Mn2O3) has been investigated in a fixed bed reactor to reveal the extent to which low temperature CLC can potentially be applicable to hydrocarbons. The effects of fuel to oxygen carrier ratio, fuel feed flow rate, and fuel residence time on the extent of combustion are reported. Methane did not combust, while near complete conversion was achieved for both n-hexadecane and n-heptane with excess oxygen carrier for CuO. For Mn2O3, complete reduction to Mn3O4 occurred, but the extent of combustion was controlled by the much slower reduction to MnO. Although the extent of cracking is relatively small in the absence of cracking catalysts, for the mechanism to be selective for higher hydrocarbons suggests that the reaction with oxygen involves radicals or carbocations arising from bond scission. Sintering of pure CuO occurred after repeated cycles, but this can easily be avoided using a support, such as alumina. The fact that higher hydrocarbons can be combusted selectively at 500 °C and below, offers the possibility of using CLC to remove these hydrocarbons and potentially other organics from hot gas streams.

Keywords: CO2 capture; Chemical looping combustion (CLC); Liquid fuels; Copper-based oxygen carrier; Manganese-based oxygen carrier (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219302981
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:173:y:2019:i:c:p:658-666

DOI: 10.1016/j.energy.2019.02.099

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:658-666