EconPapers    
Economics at your fingertips  
 

Predicting intra-day load profiles under time-of-use tariffs using smart meter data

Kiguchi Y, Heo Y, Weeks M and Choudhary R

Energy, 2019, vol. 173, issue C, 959-970

Abstract: The installation of smart meters enabling electricity load to be measured with half-hourly granularity provides an innovative demand-side management opportunity that is likely to be advantageous for both utility companies and customers. Time-of-use tariffs are widely considered to be the most promising solution for optimising energy consumption in the residential sector. Although there exists a large body of research on demand response in electricity pricing, a practical framework to forecast user adaptation under different Time-of-use tariffs has not been fully developed. The novelty of this work is to provide the first top-down statistical modelling of residential customer demand response following the adoption of a Time-of-use tariff and report the model's accuracy and the feature importance. The importance of statistical moments to capture various lifestyle constraints based on smart meter data, which enables this model to be agnostic about household characteristics, is discussed. 646 households in Ireland during pre/post-intervention of Time-of-use tariff is used for validation. The value of Mean Absolute Percentage Error in forecasting average load for a group of households with the Random Forest method investigated is 2.05% for the weekday and 1.48% for the weekday peak time.

Keywords: Time-of-use pricing; Demand-side management; Smart meters; Electricity consumption modelling; Load shifting; Residential electricity demand (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219300398
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:173:y:2019:i:c:p:959-970

DOI: 10.1016/j.energy.2019.01.037

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:959-970