EconPapers    
Economics at your fingertips  
 

Which dimensional model for the analysis of a coated tube adsorber for adsorption heat pumps?

João M.S. Dias and Vítor A.F. Costa

Energy, 2019, vol. 174, issue C, 1110-1120

Abstract: This paper presents the analysis of a coated tube adsorber for adsorption heat pumps (AHP), starting from a well-established physical model and providing information on how many dimensions need to be considered for a given accuracy. A lumped-parameter model, one-dimensional (radial direction) and two-dimensional (radial and longitudinal directions) distributed-parameter models describing the adsorber’s dynamics are discussed. The optimal resolution, guaranteeing an accuracy of ≈1% with lower computational efforts is identified. Results obtained with the three dimensional models are compared and their suitability to predict the coefficient of performance (COP) and the specific heating power (SHP) of an AHP is investigated. Results show that the lumped-parameter model is able to predict the COP with minor deviations from the reference model; however, the SHP is overestimated. Furthermore, several sensibility analyses are performed aiming to assess the influence of important parameters, such as the adsorber tube length and heat transfer fluid’s (HTF) velocity. In addition, the influence of disregarding the adsorber metal tube mass is evaluated, resulting in deviations up to ≈4.5% for the COP and ≈7% for the SHP, which are considered significant. Results guide researchers to adopt a given dimensional model for the required accuracy.

Keywords: Dimensional models; Adsorption heat pump; Adsorber; Coated tube; Coefficient of performance (COP); Specific heating power (SHP) (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219304323
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:174:y:2019:i:c:p:1110-1120

DOI: 10.1016/j.energy.2019.03.028

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:1110-1120