Model of water injection process during closed phase of spark ignition engine
Jair Leopoldo Loaiza Bernal and
Janito Vaqueiro Ferreira
Energy, 2019, vol. 174, issue C, 1121-1132
Abstract:
In the continuous quest for increased efficiency and reduced environmental impact in the use of internal combustion engines (ICEs), water injection has historically been one strategy used to achieve these objectives. However, practically all of the investigations carried out in this field are experimental tests in which water is injected into the air or combustible air mixture prior to entering the cylinder. The research presented in this paper demonstrates the results of a thermodynamic model simulation of two zones, which integrates the water injection directly into the combustion chamber. The model allows for prediction of the performance parameters of an ICE that uses water injection, as it adequately interprets the injection process phenomenology during the closed phase and the performances of important operating parameters. The model is validated by comparing its results to those reported by experimental research, using the same proposed water injection methodology and gasoline as fuel. The proposed simulation model offers significant flexibility, as it can be used to simulate different engine geometries, rotation speeds and fuels such as gasoline, ethanol, hydrated ethanol or mixtures thereof, in varying proportions. In addition, it provides a starting point for the implementation of a turbo charge and direct fuel injection model, which would allow the simulation of devices representing the current trend in the use of ECI. The results of the comparison between the experimental and simulated data show maximum error percentages of 11% in the case of BSFC, for different percentages of mass of water injection with respect to the mass of fuel, which shows the promising development of the model.
Keywords: Model thermodynamics; Two zones; Water droplet evaporation; Water injection; Pressure; Mass fraction burned (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219304414
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:174:y:2019:i:c:p:1121-1132
DOI: 10.1016/j.energy.2019.03.037
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().