CVaR-constrained scheduling strategy for smart multi carrier energy hub considering demand response and compressed air energy storage
Mohammad Jadidbonab,
Ebrahim Babaei and
Behnam Mohammadi-ivatloo
Energy, 2019, vol. 174, issue C, 1238-1250
Abstract:
Coupling different energy infrastructures, i.e. the concept of energy hub (EH), is an efficient approach to the optimal operation of both electrical and natural gas systems. This paper optimizes the risk-constrained scheduling of a wind-integrated smart multi-carrier energy hub (SMEH) and evaluates its operation in combination with compressed air energy storage (CAES) system, an electrical demand response (EDR) program, and a thermal demand response (TDR) program. The proposed SMEH consists of combined heat and power (CHP) units, a CAES system, a thermal storage system, boiler units, and an electrical heat pump (EHP) system. The penetration of wind power generation and application of the CAES system make a dependable condition to the optimal scheduling of the SMEH. The wind turbine generation and electrical and thermal demands are modeled as a scenario-based stochastic problem using the Monte Carlo simulation method. A proper scenario-reduction algorithm is also used to reduce the computational burden. Moreover, the conditional value-at-risk (CVaR) algorithm is merged with the proposed model to propitiate the risk of the high costs relevant to worst scenarios as a proper risk evaluation method. Finally, the proposed system is applied to a studied case to demonstrate the applicability and appropriateness of the proposed method.
Keywords: Smart multi-carrier energy hub (SMEH); Conditional value at risk algorithm; Demand response program; Compressed air energy storage; Wind generation; Stochastic programming (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219302373
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:174:y:2019:i:c:p:1238-1250
DOI: 10.1016/j.energy.2019.02.048
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().