EconPapers    
Economics at your fingertips  
 

Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases

Mahmood Chahartaghi and Mohammad Sheykhi

Energy, 2019, vol. 174, issue C, 1251-1266

Abstract: In this study, with a comprehensive approach, energy, economic, and environmental evaluations of a combined cooling, heating and power (CCHP) generation system driven by Stirling engine with working gases of hydrogen and helium were performed. This system can be used for residential applications. The engine was analyzed using the non-ideal adiabatic model, and two beta type Stirling engines were suggested in the CCHP system. Also, the energy analysis of the absorption chiller was presented with utilizing the waste heat of the engine. Then, the impacts of important specifications of the Stirling engine including: temperature of heater, length of regenerator, engine rotational speed, and type of working gases on the COP of absorption chiller, CCHP efficiency, Trigeneration Primary Energy Saving (TPES), Operational Cost Reduction (CR), and Trigeneration CO2 Emission Reduction (TCO2ER) relative to conventional energy supply systems were studied. Finally, at the appropriate conditions, the values for parameters of electrical power: 15.24 kW, 22.52 kW, heating capacity: 19.65 kW, 21.65 kW, cooling capacity: 12.65 kW, 14.43 kW, COP: 0.644, 0.667, CCHP efficiency: 70%, 72.29%, TPES: 24.05%, 31.3%, TCO2ER: 31.06%, 38% and CR: 75.53%, 78.8% were obtained for helium and hydrogen, respectively.

Keywords: CCHP; Stirling engine; Absorption chiller; COP; Helium; Hydrogen (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219304165
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:174:y:2019:i:c:p:1251-1266

DOI: 10.1016/j.energy.2019.03.012

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:1251-1266