Tailoring pyrogenic products from pyrolysis of defatted Euglena gracilis using CO2 as reactive gas medium
Jong-Min Jung,
Sok Kim,
Jechan Lee,
Jeong Ik Oh,
Yoon-E. Choi and
Eilhann E. Kwon
Energy, 2019, vol. 174, issue C, 184-190
Abstract:
Pyrolysis of defatted Euglena gracilis was investigated in this study to maximize energy recovery from algal biomass after lipid extraction. Prior to pyrolysis of defatted E. gracilis, the growth rate of E. gracilis was monitored to determine its potential as an initial carbonaceous feedstock for pyrolysis. This study revealed that the cell density of E. gracilis linearly increased for the first 5 days, during which the cell density reached 6.06 ± 0.82 g L−1, demonstrating that defatted E. gracilis is a promising feedstock for pyrolysis. To increase the thermal efficiency of defatted E. gracilis pyrolysis, CO2 was employed as a reactive gas medium. CO levels were increased by 45% following pyrolysis of defatted E. gracilis in a CO2 environment compared to in an N2 environment. Considering that CO is a highly combustible permanent gas, the use of CO2 in pyrolysis may result in the production of more fuel-range gaseous chemicals. Additionally, CO2 utilization increased the gaseous product yield compared to N2-pyrolysis for treating the defatted algal biomass while decreasing tar yield.
Keywords: Euglena gracilis; Microalgae; Thermo-chemical process; Pyrolysis; Carbon dioxide; Syngas (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219303524
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:174:y:2019:i:c:p:184-190
DOI: 10.1016/j.energy.2019.02.153
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().