Influence of the heat capacity of the storage material on the efficiency of thermal regenerators in liquid air energy storage systems
Lars Hüttermann and
Roland Span
Energy, 2019, vol. 174, issue C, 236-245
Abstract:
Liquid air energy storage is an innovative technology for electricity storage, using liquefied air as storage medium. Due to the high energy density of liquid air, the storage volume is smaller than that of similar storage technologies like compressed air or pumped hydro energy storage systems. Air is liquefied by means of a modified Claude-cycle. In the discharging process, liquid air is energy-efficiently compressed (compression of a liquid), vaporized, superheated, and finally expanded from high to ambient pressure using an air expander for power generation. In between, a thermal energy storage device at cryogenic temperature level is used to improve the round-trip efficiency of the system. One possible design is a packed bed thermal energy storage device, consisting of a cylinder and a packed bed of storage material. Investigations on thermodynamic properties show that especially the temperature-dependence of the heat capacity has a major influence on the performance of the thermal energy storage system. In this paper, nine real and further hypothetical storage materials are investigated. The influence of the heat capacity at cryogenic temperature is systematically analyzed and a general formulation in terms of summarizing key figures is developed. It turns out that especially the temperature-dependence is a significant parameter in this context, which is not considered within the majority of investigations in this field.
Keywords: Electrical energy storage; Liquid air energy storage; Thermal energy storage; Packed bed; Solid heat capacity (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219303482
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:174:y:2019:i:c:p:236-245
DOI: 10.1016/j.energy.2019.02.149
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().