Performance optimization of a coaxial-cylinder wave energy converter
Peng Jin,
Binzhen Zhou,
Malin Göteman,
Zhongfei Chen and
Liang Zhang
Energy, 2019, vol. 174, issue C, 450-459
Abstract:
To achieve a wider frequency range where the device has a larger capture width ratio, the performance of a heaving coaxial-cylinder wave energy converter is optimized through actively controlled generator damping and stiffness using a linear frequency domain model. The generator power take-off system is modeled as a damping-spring system, and the numerical model is validated against published results. The coupled dynamics of a two-body model is analyzed to search for the optimal generator damping and stiffness leading to maximal capture width ratio. The optimization process, which can be decoupled into two independent steps, leads to an improved performance of the device, with increased frequency bandwidth and better capture width ratio. The effects of water depth, mooring stiffness, and the dimensions of the WEC on the capture width ratio are also studied, and parameter values are identified which correspond to optimal performance of the device.
Keywords: Wave energy converter; Capture width ratio; Optimization; Active control; Generator parameters (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219303998
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:174:y:2019:i:c:p:450-459
DOI: 10.1016/j.energy.2019.02.189
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().