Kalina power plant part load modeling: Comparison of different approaches to model part load behavior and validation on real operating data
Fabian Dawo,
Christoph Wieland and
Hartmut Spliethoff
Energy, 2019, vol. 174, issue C, 625-637
Abstract:
Geothermal energy can play a vital role in the mitigation of climate change due to its CO2-neutral, renewable and non-fluctuating character. Because of the expensive preparation of the geothermal wells, the thermal water should be utilized with the highest efficiency. Therefore, the wells are often exploited in combined heat and power concepts. Consequently, the power plant operates in part load most of the time. However, this high portion of part load operation is often not fully considered in the design stage of the plant, due to a lack of suitable simulation models. Therefore, the purpose of this paper is to compare several approaches to simulate the part load behavior of the geothermal Kalina power plant in Unterhaching (Germany) and to validate them with operational data. Simulation approaches to calculate the isentropic efficiency of the turbine and the heat transfer coefficients of the heat exchangers are studied and compared on component level. An investigation of different combinations of these component models then follows. The results show that a detailed correlation to model the isentropic efficiency of the turbine is necessary to achieve sufficient accuracy. Furthermore, modeling plate heat exchangers with a power law approach for the heat transfer coefficient appears promising.
Keywords: Kalina cycle; Off-design; Part load behavior; Modeling; Operating data; Geothermal (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219303792
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:174:y:2019:i:c:p:625-637
DOI: 10.1016/j.energy.2019.02.173
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().