Experimental and numerical investigation of vitiation effects on the auto-ignition of n-heptane at high temperatures
Dexiang Zhang,
Yijun Wang,
Changhua Zhang,
Ping Li and
Xiangyuan Li
Energy, 2019, vol. 174, issue C, 922-931
Abstract:
The ground test in wind-tunnel with high temperatures plays an important role in the scramjet design and refinement. To simulate supersonic flight conditions, combustion-heated approach in ground tests introduces carbon dioxide and water vapor in the test flow. Understanding of vitiation effects is crucial for extrapolating the ground test results to the actual flight conditions. The primary goal of this work is to investigate the vitiation effects of CO2 and H2O on auto-ignition of n-heptane. With 20% CO2 or H2O replacement of N2 in air, ignition delay times of n-heptane/air were investigated behind reflected shock waves at temperatures of 1050–1400 K, pressures of 2 and 10 atm, and with equivalence ratios of 1.0 and 0.5. The addition of CO2 shows slightly inhibiting effect, whereas H2O shows a promoting effect on the ignition of n-heptane. Further numerical simulations of kinetic mechanism were performed to investigate the thermal, chemical and third-body collision effects of CO2 and H2O separately. Results indicated that the thermal effect of CO2 is the dominant factor for the inhibiting effect on n-heptane ignition, and the third-body collision of H2O is the major factor promoting the ignition of n-heptane.
Keywords: Auto-ignition; Vitiation effect; n-Heptane; Kinetic mechanism (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219304396
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:174:y:2019:i:c:p:922-931
DOI: 10.1016/j.energy.2019.03.035
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().