Thermal and solid electrolyte interphase characterization of lithium-ion battery
Chia-Chin Chang,
Sin-Yi Huang and
Wei-Hsin Chen
Energy, 2019, vol. 174, issue C, 999-1011
Abstract:
Thermal behavior and solid electrolyte interphase (SEI) are crucial topics for the development and operation of the lithium-ion battery. To investigate the thermal behavior and SEI formation in a lithium-ion battery (C-LiMn0.5Ni0.3Co0.2O2), a numerical method combining the pseudo-two-dimensional electrochemical model, heat transfer model, and capacity fading model is developed. For the battery operated at a low C-rate, the ohmic heat and the reversible heat dominate the heat generation at a low state of charge (SOC) and high SOC, respectively. Alternatively, the ohmic heat is the dominant factor causing heat generation at a high C-rate. The reversible heat reaches a maximum at the SOC of 65% due to the entropic coefficient of the cathode active materials. The SEI thickness increases around 70 nm with increasing the C rate cycling. The heat generation is the bottleneck for the resistance of Li+ ion conductivity at the SCI. The heat generation of the cathode is larger than that of the anode, which is caused by the low solid phase conductivity of the cathode. This analysis has provided useful insights into the thermal management of lithium-ion battery in the course of charging and discharging which is conducive to the development and safe operation of the battery.
Keywords: Lithium-ion battery; Electrochemical model; Heat transfer model; Capacity fade model; Heat generation; Solid electrolyte interphase film (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219304116
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:174:y:2019:i:c:p:999-1011
DOI: 10.1016/j.energy.2019.03.007
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().