EconPapers    
Economics at your fingertips  
 

Experimental and numerical study of laminar flame speeds of CH4/NH3 mixtures under oxy-fuel combustion

Shibo Liu, Chun Zou, Yu Song, Sizhe Cheng and Qianjin Lin

Energy, 2019, vol. 175, issue C, 250-258

Abstract: The laminar flame speeds of CH4/NH3 mixtures during oxy-fuel combustion conditions were measured under variable NH3/CH4 ratios (0.1–0.2), O2 mole fractions (35%–40%), and CO2 mole fractions (45%–65%) in a counterflow flame configuration (set at atmospheric pressure and unburnt mixture temperature (Tu = 300 K)). These experimental results were compared to the numerical results obtained through three detailed chemical kinetic mechanisms: the Okafor, Mendiara and HUST (Huazhong University of Science and Technology) mechanisms. The comparisons showed that the results obtained through the HUST Mechanism were in good agreement with the experimental results. The experimental results showed that the laminar flame speeds increased linearly with decreasing CO2 or increasing O2 concentrations under the conditions considered, while the slopes were irrelevant for the equivalence ratio. Nevertheless, the effects of NH3 concentration depended on the equivalence ratio: the sensitivity and pathway analyses of NH3 oxidation revealed that, among the N-containing reactions in the fuel-lean region, NO oxidation and reduction (NO + HO2 = NO2+OH, NH2+NO = NNH + OH, NO2+H = NO + OH, and CH3+NO2 = CH3O + NO) had the largest impact on the laminar flame speeds. In stoichiometric region, the NO reduction pathway (NH2+NO = N2+H2O, NH2+NO = NNH + OH, NH + NO = N2O + H, and NH + NO = N2+OH) greatly contributed to flame propagation. In fuel-rich region, N + NO = N2+O and N + OH = NO + H had the biggest impact over laminar flame speeds.

Keywords: Laminar flame speed; Oxy-fuel; NH3 oxidation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421930444X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:175:y:2019:i:c:p:250-258

DOI: 10.1016/j.energy.2019.03.040

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:175:y:2019:i:c:p:250-258