Tar reduction in biomass syngas using heat exchanger and vegetable oil bubbler
Sunil Thapa,
Natarianto Indrawan,
Prakashbhai R. Bhoi,
Ajay Kumar and
Raymond L. Huhnke
Energy, 2019, vol. 175, issue C, 402-409
Abstract:
A heat exchanger and vegetable oil bubbling system was designed and tested for biomass-generated syngas cooling and cleaning. The fully enclosed heat exchanger contained water at 15 °C, with syngas having to travel 35 m3/s. Using canola oil, the bubbler was tested at 70 and 100 mm oil depths and 5 and 10 mm syngas bubble sizes to determine the effect of tar removal. The results showed that tar removal efficiency was significantly affected by oil depth and bubble size; however, the interaction between bubble size and oil depth was not significant. About 60% of tars was removed by the heat exchanger alone and 96% of the remaining tars was removed by the oil bubbler when used in series with the heat exchanger. Overall, tar reduction efficiency of 98.5% was achieved with the heat exchanger plus oil bubbler having oil depth of 100 mm and syngas bubble size of 5 mm. Heat exchanger removed most of the tars by cooling the syngas below its dew point but syngas tars with low dew point was absorbed in the oil bubbler.
Keywords: Biomass; Gasification; Tar; Syngas cleaning; Oil bubbler (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219304499
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:175:y:2019:i:c:p:402-409
DOI: 10.1016/j.energy.2019.03.045
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().