Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system
Hegazy Rezk,
Enas Taha Sayed,
Mujahed Al-Dhaifallah,
M. Obaid,
Abou Hashema M. El-Sayed,
Mohammad Ali Abdelkareem and
A.G. Olabi
Energy, 2019, vol. 175, issue C, 423-433
Abstract:
A hybrid renewable energy systems (HRESs) comprises of photovoltaic (PV), and self-charging fuel cells (SCFC) is designed for securing electrical energy required to operate brackish water pumping (BWP) and reverse osmosis desalination (RO) plant of 150 m3 d-1 for irrigation purposes in remote areas. An optimal configuration of the proposed design is determined based on minimum cost of energy (COE) and the minimum total net present cost (NPC). Moreover, a comparison with a stand-alone diesel generation (DG) or grid extension is carried out against the optimal configuration of PV/SCFC HRES. The modeling, simulation, and techno-economic evaluation of the different proposed systems, including the PV/SCFC system are done using HOMER software. Results show that PV array (66 kW), FC (9 kW), converter (25 KW) –Electrolyzer (15 kW), Hydrogen cylinder (70 kg) are the viable economic option with a total NPC of $115,649 and $0.062 unit cost of electricity. The COE for the stand-alone DG system is 0.206 $/kWh, which is 69.90% higher than that of the PV/SCFC system. The PV/SCFC system is cheaper than grid extension. This study opens the way for using a fuel cell as an effective method for solving the energy intermittence/storage problems of renewable energy sources.
Keywords: Stand-alone hybrid system; Photovoltaic cells; Fuel cells; Reverse osmosis desalination; Energy efficiency (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219303731
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:175:y:2019:i:c:p:423-433
DOI: 10.1016/j.energy.2019.02.167
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().