Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor
Ahmad Zubair Yahaya,
Mahendra Rao Somalu,
Andanastuti Muchtar,
Shaharin Anwar Sulaiman and
Wan Ramli Wan Daud
Energy, 2019, vol. 175, issue C, 931-940
Abstract:
Gasification of coconut shell (CS) and palm kernel shell (PKS) is conducted in a batch type downdraft fixed-bed reactor to evaluate the effect of particle size (1–3 mm, 4–7 mm, and 8–11 mm) and temperature (700, 800, and 900 °C) on gas composition and gasification performance. The response surface methodology integrated variance-optimal design is used to identify the optimum condition for gasification. Gas composition, which is measured using the biomass particle size of 1–11 mm at 700–900 °C, are 8.20–14.6 vol% (H2), 13.0–17.4 vol% (CO), 14.7–16.7 vol% (CO2), and 2.82–4.23 vol% (CH4) for CS and 7.01–13.3 vol% (H2), 13.3–17.8 vol% (CO), 14.9–17.1 vol% (CO2), and 2.39–3.90 vol% (CH4) for PKS. At similar conditions, the syngas higher heating value, dry gas yield, carbon conversion efficiency, and cold gas efficiency are 4.01–5.39 MJ/Nm3, 1.50–1.95 Nm3/kg, 52.2–75.9%, and 30.9–56.4% for CS, respectively, and 3.82–5.09 MJ/Nm3, 1.48–1.92 Nm3/kg, 59.0–81.5%, and 33.0–57.1% for PKS, respectively. Results reveal that temperature has a greater role than particle size in influencing the gasification reaction rate.
Keywords: Coconut shell; Palm kernel shell; Coconut shell; Downdraft gasifier; Biomass particle size; Gasification temperature (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219305547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:175:y:2019:i:c:p:931-940
DOI: 10.1016/j.energy.2019.03.138
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().