Experimental investigation on model predictive control of radiant floor cooling combined with underfloor ventilation system
Dongliang Zhang,
Ning Cai,
Xiaobo Cui,
Xueying Xia,
Jianzhong Shi and
Xiaoqing Huang
Energy, 2019, vol. 176, issue C, 23-33
Abstract:
Energy saving potential of radiant floor cooling combined with underfloor ventilation (RFCUV) system has been restricted by its control problems. Existing conventional control methods of radiant cooling system have several disadvantages, such as control lag, poor control performance, and low economy, etc. The objectives of this study were to: (i) build a dynamic simplified model and validate its precision experimentally; (ii) implement advanced model predictive control (MPC) on RFCUV system; and (iii) demonstrate MPC control performance by comparing with existing conventional proportional-integral-derivative (PID) experimentally. Experimental results indicated that under experimental step setpoint variations, the adjusting time of indoor air temperature or operative temperature was only 12 min with MPC controller, and was 30 min with PID controller; it took only 1 min to reach recommended thermal comfort range with MPC controller, and 17 min with PID controller. During 9:00 to 17:00 in typical design day of Nanjing city, compared with PID controller, MPC controller yielded 17.5% energy saving when maintaining equal or better indoor comfort. Thus, compared with PID, MPC demonstrated the advantages of rapid responses, good stability and excellent energy saving effect in RFCUV system.
Keywords: Radiant floor cooling; Underfloor ventilation; Model predictive control; Proportion-integral-derivative control; Control performance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219305067
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:176:y:2019:i:c:p:23-33
DOI: 10.1016/j.energy.2019.03.102
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().