EconPapers    
Economics at your fingertips  
 

Broadening human thermal comfort range based on short-term heat acclimation

Daokun Chong, Neng Zhu, Wei Luo and Zhiyu Zhang

Energy, 2019, vol. 176, issue C, 418-428

Abstract: Elevating indoor temperature set-points can reduce cooling energy use. Short-term heat acclimation (HA), the artificially induced adaptation developed in three consecutive days, is an effective method to increase the occupants' acceptance to hot environments. However, the quantitative study on the effects of short-term HA on thermal comfort is lacking. To this end, simulated experiments were conducted in a climate chamber to test the difference of subjects' thermal comfort before and after short-term HA. The subjects were instructed to do intermittent treadmill exercise under hot conditions to reach a HA state. During the trials, core temperature, ratings of perceived exertion (RPE), and ratings of thermal sensation (RTS) were measured. Perceptual strain index (PeSI) was used to assess the effect of short-term HA. The results showed that short-term HA could improve subjects’ adaptability to warmer environments without sacrificing thermal comfort. Furthermore, a HA zone was defined based on the predicted percentage of dissatisfied (PPD) of 10%. The upper limit of the HA zone was 2.1 °C higher than that of the summer thermal comfort zone in ASHRAE Standard 55–2017. This finding suggests that a higher temperature set-point could be considered into the control of air-conditioning systems, contributing to building energy conservation.

Keywords: Building energy use; Thermal comfort zone; Short-term heat acclimation; Temperature set-points (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219306267
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:176:y:2019:i:c:p:418-428

DOI: 10.1016/j.energy.2019.04.007

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:418-428