Numerical simulation of renewable power generation using reverse electrodialysis
Sourayon Chanda and
Peichun Amy Tsai
Energy, 2019, vol. 176, issue C, 531-543
Abstract:
We numerically investigate renewable power generation using reverse electrodialysis (RED), by harnessing salinity gradient energy of two constant inflows of salt solutions of different concentrations via a charged nanochannel. We compute and elucidate coupled flow, ion flux, electrical potential, and resultant electric outputs in the nanofluidic RED battery. The results of power output density and ion transfer across the nanochannel strongly depend on nanochannel height, whereas open-circuit voltage, short circuit current, and nanochannel resistance on the length. Energy conversion efficiency, on the other hand, display a non-linear dependence on both dimensions. More importantly, the results of nanochannel resistance and power output density reveal a power-law dependence on the concentration difference, quantitatively shedding light on the optimal RED flow designs. For the first time, our simulations at different inflow velocities show that the output power and conversion efficiency remain nearly constant at low speed but increase by ≈2.3 times and 10%, respectively, at high rate when advection effect becomes significant comparing to diffusion. These results quantitatively show profound effects of nanochannel dimensions, concentration difference, and inflow velocity on the renewable electrical energy outputs, offering optimal designs for maximizing reverse electrodialysis power.
Keywords: Reverse electrodialysis; Renewable energy; Power generation; Salinity gradient; Charge-selective membrane; Nanofluidics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219305523
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:176:y:2019:i:c:p:531-543
DOI: 10.1016/j.energy.2019.03.136
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().