EconPapers    
Economics at your fingertips  
 

Ferrous sulfate as an in-situ anodic coagulant for enhanced bioelectricity generation and COD removal from landfill leachate

Smita S. Kumar, Vivek Kumar, Ritesh Kumar, Sandeep K. Malyan and Narsi R. Bishnoi

Energy, 2019, vol. 176, issue C, 570-581

Abstract: Landfill Leachate is a heavily contaminated wastewater. MFCs (Microbial Fuel cells) are unique bioreactors, which utilize the catalytic activity of microbes for converting the chemical energy stored in organic-rich streams for bioelectricity production. MFCs represent an auspicious technology to treat landfill leachate and generate bioelectricity. Here, we evaluated the addition of ferrous sulfate as anodic coagulant as well as a media component to enhance the MFC performance. The Box-Behnken Design model of Response surface methodology (RSM) was found suitable for the determination of optimal conditions for the removal of chemical oxygen demand (COD). COD removal of 78.6% was achieved with coagulation alone at pH 8, reaction time of 90 min, and a coagulant dose of 3 g/L. Ferrous sulfate addition to MFC, significantly improved COD removal. 99.6% removal of total COD was achieved from 75% of landfill leachate, at a retention period of four days; whereas, with 100% leachate as anodic feed, 98.7% COD was removed on the third day. The volumetric power density of 6644.6 mW/m3 was achieved without any catalyst using flexible graphite sheets as electrodes. This study revealed that the integration of coagulation with MFC technology enhanced the treatment efficiency as well as power generation for landfill leachate.

Keywords: Landfill leachate; Bio-electricity; Ferrous sulfate; Coagulation; Box-Behnken model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219306334
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:176:y:2019:i:c:p:570-581

DOI: 10.1016/j.energy.2019.04.014

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:570-581