EconPapers    
Economics at your fingertips  
 

The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis

Yanming Ding, Wenlong Zhang, Lei Yu and Kaihua Lu

Energy, 2019, vol. 176, issue C, 582-588

Abstract: Reaction kinetic parameters estimation of biomass pyrolysis is a relatively difficult optimization problem due to the complexity of pyrolysis model. Two common heuristic algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are applied to estimate the kinetic parameters of three-component parallel reaction mechanism based on the thermogravimetric experiment in wide heating rates. The accuracy and efficiency of GA and PSO algorithms are compared with each other under the identical optimization conditions. The results indicate the better optimization abilities of PSO with the closer convergence solution to the global optimum and quicker convergence to the solution than GA based on the three-component parallel reaction mechanism of biomass pyrolysis. Especially, the improvement of best fitting value of PSO reaches up to 30% compared with that of GA. Furthermore, 14 estimated kinetic parameters of best fitting value are obtained and the mass loss rate predicted results including three separate components (hemicellulose, cellulose and lignin) are compared with experimental data.

Keywords: Biomass pyrolysis; Kinetic parameters; Optimization scheme; GA; PSO (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421930653X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:176:y:2019:i:c:p:582-588

DOI: 10.1016/j.energy.2019.04.030

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:582-588