EconPapers    
Economics at your fingertips  
 

The heat transfer of supercritical CO2 in helically coiled tube: Trade-off between curvature and buoyancy effect

Shijie Zhang, Xiaoxiao Xu, Chao Liu, Xinxin Liu, Yadong Zhang and Chaobin Dang

Energy, 2019, vol. 176, issue C, 765-777

Abstract: Supercritical CO2 Rankine cycle has great development potential as a power cycle for converting low-grade thermal energy into electricity. Better understanding of supercritical CO2 heat transfer in helically coiled tubes (HCTs) is required for design and operation of supercritical CO2 Rankine cycle power systems. In this work, the SST k∼ω model is employed. A new dimensionless buoyancy parameter Ψ is proposed which denotes the ratio of gravitational buoyancy force to overall curvature effect. Furthermore, a flow regimes map is proposed based on the inclination angle of the dividing streamline between the two vortexes and buoyancy parameter Ψ. The mixed convection region in HCT is decomposed into a gravitational buoyancy force dominated heat transfer region (B Region α>45°) and a curvature effect dominated heat transfer region (C Region α<45°). Subsequently, the effects of HCT geometry on heat transfer mechanisms are respectively investigated in B and C Region, which help us better understanding the relationship of the buoyancy criterion and flow characteristics. The results indicate that the effects of coiled pitch and coiled diameter on heat transfer can be neglected in B Region. In C Region, the heat transfer is suppressed as coiled pitch increases and it will appear oscillation when torsion effect is strong enough. In addition, the heat transfer is enhanced with curvature increases but except for near the pseudo-critical region.

Keywords: Supercritical CO2; Curvature effect; Buoyancy effect; Flow characteristics; Qualitative analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219305705
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:176:y:2019:i:c:p:765-777

DOI: 10.1016/j.energy.2019.03.150

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:765-777