A theoretical study on a novel combined organic Rankine cycle and ejector heat pump
Chenghu Zhang,
Jiyou Lin and
Yufei Tan
Energy, 2019, vol. 176, issue C, 81-90
Abstract:
A novel combined organic Rankine cycle and ejector heat pump is proposed, which combines the organic Rankine cycle and ejector heat pump, and could produce both power output and heat output simultaneously. An ejector is installed on the turbine inlet side to increase the total heat exchange amount of the combined cycle by utilizing the injection capability of the high-pressure primary fluid. Using the heat exchange capacity of the cold source to adjust the matching problem between the primary fluid heat source and secondary fluid heat source. The constant pressure mixing model is used to model the ejector, and a new solution method of the model is proposed. Through the parametric analysis, the results show that the heat exchange of secondary fluid and turbine intake pressure have significant effects on the thermal efficiency and heat recovery capacity. By comparing with the basic organic Rankine cycle, the maximum net power output of the novel combined cycle can be increased by 10.78%, and the maximum heat recovery capacity can be increased by 19.04%.
Keywords: Combined cycle; Organic Rankine cycle; Ejector heat pump; Parametric analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219306103
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:176:y:2019:i:c:p:81-90
DOI: 10.1016/j.energy.2019.03.190
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().