Predicting the performance of a micro gas turbine under solar-hybrid operation
Brian Ssebabi,
Frank Dinter,
Johan van der Spuy and
Markus Schatz
Energy, 2019, vol. 177, issue C, 121-135
Abstract:
There are currently no commercial solar-hybrid gas turbine systems readily available off-the-shelf. Several operation and control challenges still exist, and significant development effort is still required to provide technically proven units. To address this gap, this study modeled the performance of a solar-hybrid micro gas turbine (MGT) system, considering both steady-state and transient operation. Based on the component matching, the equilibrium running point shifted on the compressor characteristic, to counter the additional system pressure losses, and ensure a useful work output, albeit with a reduced surge margin. Solar-hybrid operation was only possible for solar share of at least 20%, while the work output and cycle thermal efficiency drop below standard operation levels beyond certain solar share. In contrast to standard operation, a higher nominal work output of 20 kW, at a lower SFC of 0.0004 kg/kWh and a higher cycle thermal efficiency of 8% was predicted, the latter potentially increasing to 20% with recuperation. Solar-hybrid equilibrium running could eliminate the risk of running into compressor surge. The findings from this study should guide operation and control strategies for the proposed, and future solar-hybrid MGT systems, which should in turn contribute to their development and commercialization.
Keywords: Solar-hybrid micro gas turbine systems; Predicting the performance of solar-hybrid micro gas turbine systems; Steady-state and transient performance of solar-hybrid micro gas turbine systems; Operation and control strategies for solar-hybrid micro gas turbine systems (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219306875
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:177:y:2019:i:c:p:121-135
DOI: 10.1016/j.energy.2019.04.064
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().