EconPapers    
Economics at your fingertips  
 

Diurnal thermal performance characterization of a solar air heater at local and global scales integrated with thermal battery

Soma Sekhar Reddy, Vikram Soni and Arvind Kumar

Energy, 2019, vol. 177, issue C, 144-157

Abstract: The diurnal thermal performance of a Solar Air Heater (SAH) integrated with Phase Change Material (PCM) based thermal battery is numerically studied. A control volume based advection-diffusion model is coupled with Discrete Ordinate Model (DOM) for considering the effects of solar radiation. Enthalpy-porosity technique is employed to consider various phases of the PCM (solid, liquid and mushy zone). At first, the model is validated with the available experimental result of outlet air temperature for a solar air heater. Thereafter, solar air heaters with and without thermal battery are compared to evaluate the effect of PCM on the thermal performance of the SAH. The local and global heat transfer, the phase change characteristics and their effect on the charging/discharging operation are described. Various numerical simulations are performed to propose optimized operational and design parameters. The integration of the thermal battery enables the SAH to work as diurnal (both day and night) which was not possible with the conventional SAH. The operating time of SAH integrated with thermal battery increases notably by 6 h. To evaluate the enactment of the system, thermal performance indicators are discussed.

Keywords: Solar air heater; Thermal battery; Diurnal energy storage; PCM charging/discharging; Thermal performance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421930636X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:177:y:2019:i:c:p:144-157

DOI: 10.1016/j.energy.2019.04.017

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:177:y:2019:i:c:p:144-157