EconPapers    
Economics at your fingertips  
 

Analysis on solar energy powered cooling system based on desiccant coated heat exchanger using metal-organic framework

F. Xu, Z.F. Bian, T.S. Ge, Y.J. Dai, C.H. Wang and S. Kawi

Energy, 2019, vol. 177, issue C, 211-221

Abstract: The solar powered cooling system based on desiccant coated heat exchanger (DCHE) is an alternative to traditional vapor compression cooling system (VCCS) due to its energy-saving and eco-friendliness. To obtain improved performance, high-porosity Metal-Organic Framework (MOF) is introduced as desiccant. In our study, Cu-BTC (HKUST-1) was fabricated and certified with high purity and good crystallization by X-ray diffraction (XRD). N2 isotherm adsorption-desorption properties of MOF were investigated. Results show that MOF has co-existence of micropores and mesopores with relatively large specific surface area and pore volume. Water vapor isotherm adsorption of MOF and type B silica gel (SGB) was conducted. Isotherms indicate that moisture uptake of MOF is higher than that of SGB at low relative humidity. A dynamic mathematical model of this system was established. The solar performance was evaluated firstly. Results suggest that solar collector can provide 52.5–80.4 °C hot water from 9:00 to 19:00. Then the simulation was conducted under American Air-conditioning and Refrigeration Institute (ARI) summer and Shanghai August conditions. Results exhibit that MOF coated heat exchanger (MCHE) has more significant enhancement of dehumidification performance than SGB coated heat exchanger (SCHE) with increased regeneration temperature and MCHE is more suitable for application under ARI summer condition.

Keywords: Metal-organic framework; Adsorption isotherm; Desiccant cooling; Solar energy; Dehumidification performance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219307224
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:177:y:2019:i:c:p:211-221

DOI: 10.1016/j.energy.2019.04.090

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:177:y:2019:i:c:p:211-221