The influence of demand response on wind-integrated power system considering participation of the demand side
Jianwei Gao,
Zeyang Ma and
Fengjia Guo
Energy, 2019, vol. 178, issue C, 723-738
Abstract:
Demand response (DR) can serve as virtual reserve to cope the impact of wind power on system reliability. This paper describes a new approach to investigating the impact of DR in a wind-integrated power system from the perspective of generation adequacy. First, owing to the uncertainty of human behavior, DR cannot be trusted to provide a sufficient reserve. To characterize the associated uncertainty, we use a value function of prospect theory to depict the risk attitude of the customer. Based on this function, we propose a variant Roth-Erev algorithm to characterize the uncertainty of customer participation and measure the available capacity of DR. Second, we introduce the available capacity of DR into operational constraints and construct a DR scheduling model to reduce system operation costs. Finally, based on the uncertainty characterization of DR and a scheduling model, we extend the traditional assessment procedure using Monte-Carlo simulation and propose a novel procedure to evaluate the impact of DR on generation adequacy. Simulation results show that introducing DR can improve the generation adequacy of a wind-integrated power system. The proposed DR scheduling method reduces the operational cost and improves generation adequacy.
Keywords: Demand response; Wind power; Generation adequacy; Prospect theory; Power system operation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219307376
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:178:y:2019:i:c:p:723-738
DOI: 10.1016/j.energy.2019.04.104
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().