Full-scale CFD investigation of gas-particle flow, interactions and combustion in tangentially fired pulverized coal furnace
Srdjan Belošević,
Ivan Tomanović,
Nenad Crnomarković and
Aleksandar Milićević
Energy, 2019, vol. 179, issue C, 1036-1053
Abstract:
Investigations suggest the need for better understanding of reactive gas-particle turbulent flow phenomena in full-scale energy systems. Numerical study was done in 350 MWe utility boiler tangentially fired furnace to clarify selected issues, such as turbulence modulation, particles dispersion, energy transfer between phases, combustion process and flame, by using an in-house developed combustion code. Numerical experiments demonstrated remarkable complexity of flow and interphase exchange. Maximal decrease in average turbulence kinetic energy of 33% due to dispersed phase was predicted for representative monodispersed coal; augmentation obtained for large particles could become attenuation due to the particles size change during combustion. Grinding fineness of polydispersed coal affected the flow, combustion and flame considerably. Fine grinding (R90 = 48.40%) provided ascending flame, higher furnace exit temperature and decrease in turbulence energy, compared with coarse grinding (R90 = 73.85%). Combustion of each particle size class of coal is completed at different vertical levels, influencing the flame position. Diagrams based on numerical predictions were proposed to enable efficient estimations of combustion and flame characteristics in the case-study furnace, for various coal qualities and mass fractions and changed distributions of coal particle size classes over the burner tiers, while necessity for further investigation was pointed out as well.
Keywords: Full-scale modeling; Gas-particle flow; Turbulence modulation; Pulverized coal combustion; Grinding fineness; Flame (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219309351
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:179:y:2019:i:c:p:1036-1053
DOI: 10.1016/j.energy.2019.05.066
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().