Micro-tubular solid oxide fuel cell stack operated with catalytically enhanced porous media fuel-rich combustor
Hongyu Zeng,
Siqi Gong,
Yixiang Shi,
Yuqing Wang and
Ningsheng Cai
Energy, 2019, vol. 179, issue C, 154-162
Abstract:
The flame fuel cell (FFC) is advantageous for its simple setup, quick start-up, and high fuel flexibility. However, one important drawback of the FFC is its relatively low electrical efficiency, which is mainly limited by the reforming efficiency of the burner and fuel utilization. In this study, to increase the reforming efficiency and fuel utilization, a catalytically enhanced porous media combustor was integrated with a micro-tubular solid oxide fuel cell stack. The second layer of the porous material was impregnated with 0.5 wt% Rh, improving the reforming efficiency from 49% to 64.8%. The fuel utilization was demonstrated to be 32.6% when the equivalence ratio was 1.6 and the inlet flow rate of combustion products to the anode of the stack was 200 mL min−1. The effects of the equivalence ratio and anode gas flow rate on the electrochemical performance and efficiency were investigated. A power density of 72.9 mW cm−2 and a total electrical efficiency of 12.9% were obtained at a voltage of 0.76 V and an equivalence ratio of 2.4.
Keywords: Catalytically enhanced; Porous media; Flame fuel cell; Heat and power cogeneration (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219307583
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:179:y:2019:i:c:p:154-162
DOI: 10.1016/j.energy.2019.04.125
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().