EconPapers    
Economics at your fingertips  
 

Durability of V2O5-WO3/TiO2 selective catalytic reduction catalysts for heavy-duty diesel engines using B20 blend fuel

Pi-qiang Tan, Shi-yan Wang, Zhi-yuan Hu and Di-ming Lou

Energy, 2019, vol. 179, issue C, 383-391

Abstract: The durability of V2O5-WO3/TiO2 selective catalytic reduction (SCR) catalysts for heavy-duty diesel engines was evaluated based on 500 h SCR durability tests conducted using B20 fuel (20% v/v biodiesel + 80% v/v petroleum diesel). The fresh and deteriorated SCR catalysts were characterized by X-ray fluorescence, X-ray diffraction, and Brunauer-Emmett-Teller surface area measurements to investigate the deterioration mechanism of the catalysts. The results show that the SCR de-NOx performance is degraded after SCR durability testing, particularly at high engine speeds. The NOx conversion efficiency of the deteriorated SCR catalysts decreases at temperatures above 400 °C but remains high at temperatures between 250 and 400 °C. The catalyst characterization results reveal that the deterioration in the de-NOx performance is not owing to anatase-to-rutile transformation of TiO2, but because of a decrease in the specific surface area and the loss of the catalyst components, which are greater in the front cross section of the SCR than in the rear cross section. For a given catalyst cross section, the decrease in the specific surface area exhibits a positive correlation with the flow rate of the exhaust gas.

Keywords: Diesel engine; Selective catalytic reduction; Durability test; NOx emissions; Catalyst characterization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219307820
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:179:y:2019:i:c:p:383-391

DOI: 10.1016/j.energy.2019.04.149

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:383-391