EconPapers    
Economics at your fingertips  
 

Synthesis, characterization and modification of monolithic ZSM-5 from geopolymer for CO2 capture: Experiments and DFT calculations

Hao Chen, Yao Jun Zhang, Pan Yang He and Chan Juan Li

Energy, 2019, vol. 179, issue C, 422-430

Abstract: Zeolites exhibit the highest performance metrics among the second generation of post-combustion CO2 capture materials; however, conventional synthetic zeolite powders are relatively expensive and need to be shaped by binding agents for end use. In this study, cost-effective monolithic Na/ZSM-5 was successfully prepared for the first time using metakaolin and industrial silica fume waste as starting materials via polycondensation and seed-induced hydrothermal crystallization. The synthesised Na/ZSM-5 exhibited an adsorption capacity of 1.79 mmol/g CO2. To further enhance the CO2 adsorption capacity, the Ni/ZSM-5 was modified by ion-exchange of Na+ with Ni2+, revealing an improved adsorption capacity of 2.38 mmol/g CO2. Density functional theory (DFT) calculations were employed to explain the adsorption mechanism and the superior CO2 adsorption performance of Ni/ZSM-5 compared to Na/ZSM-5. The results show that the sorption of CO2 in both Na/ZSM-5 and Ni/ZSM-5 is physisorption by ion–dipole interaction, and the energy emission using Ni/ZSM-5 is higher than that using Na/ZSM-5 for the same CO2 capture efficiency. This research demonstrates a new method of preparing cost-effective shape-controllable zeolites with excellent CO2 capture capacity. Furthermore, it enables the high value-added utilization of the industrial waste of silica fume.

Keywords: Silica fume; Geopolymer; Monolithic ZSM-5; Ion exchange; CO2 capture; DFT (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219307467
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:179:y:2019:i:c:p:422-430

DOI: 10.1016/j.energy.2019.04.113

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:422-430