EconPapers    
Economics at your fingertips  
 

Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances

Seyed Ali Atyabi, Ebrahim Afshari, Somchai Wongwises, Wen-Mon Yan, Abdellah Hadjadj and Mostafa Safdari Shadloo

Energy, 2019, vol. 179, issue C, 490-501

Abstract: In this paper, a three-dimensional multiphase model of the polymer exchange membrane (PEM) fuel cell is simulated to study the effect of assembly pressure on the contact resistance between the gas diffusion layer (GDL) and bipolar plate (BP) interface. The results reveal that the increase of assembly pressure is associated with a decrease in the contact resistance between the GDL and BP interface, which results in reaching an ideal fuel cell performance. The performance improves until the assembly pressure of 4.5 MPa and it slightly drops with a clamping pressure of 5.5 MPa in the ohmic loss region of the polarization curve. Additionally, the variation of the electrical field in a cross-section of the channel length shows that the intrusion of GDL into the flow channel increases with increasing assembly pressure; consequently, the maximum electrical current will increase. The cell temperature rises at higher assembly pressure when considering the thermal contact resistance. This increase is higher on the cathode side because of the existence of the reaction heat source. Additionally, it is found that the distribution of electrical potential and oxygen concentration is more uniform at higher clamping pressure. This results in the development of the PEM fuel cell life cycle.

Keywords: PEM fuel cell; GDL deformation; Electrical resistance; Thermal contact resistance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219308941
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:179:y:2019:i:c:p:490-501

DOI: 10.1016/j.energy.2019.05.031

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:490-501