Model predictive control for thermal energy storage assisted large central cooling systems
Kui Shan,
Cheng Fan and
Jiayuan Wang
Energy, 2019, vol. 179, issue C, 916-927
Abstract:
Variable speed drivers (VSDs) are commonly used for enhancing energy efficiency in building central cooling systems. However, VSDs often consume about 4–8% of the converted energy. Moreover, the initial and maintenance costs of VSDs for extremely large and high voltage chillers could be extremely high. This study proposes to use thermal energy storage (TES) to enhance energy efficiency of extremely large constant speed chillers. A new model predictive control method is proposed to control the charging/discharging of TES and on/off of chillers to achieve high efficiency. The proposed method partially decouples the demand side and the supply side, so that the large chillers are either operated in high efficiency or turned off. The method can also solve the problem of frequent chiller tripping due to too low load in winter conditions. The proposed optimal control strategy has been validated on a dynamic platform built based on the existing chiller plant in a high-rise commercial building. Validation tests were conducted in both summer and winter conditions based on real operation data. Results show that the proposed method could improve the efficiency of chillers by 3.10% and 22.94% in summer and winter conditions, respectively.
Keywords: Energy efficiency; Thermal energy storage (TES); Chilled water storage (CWS); Model predictive control (MPC); Optimal control (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219308175
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:179:y:2019:i:c:p:916-927
DOI: 10.1016/j.energy.2019.04.178
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().