Heat-transfer characteristics of a latent heat storage system using MgCl2 · 6H2O
Jong Chan Choi and
Sang Done Kim
Energy, 1992, vol. 17, issue 12, 1153-1164
Abstract:
Heat-transfer characteristics have been determined for the circular finned and unfinned-tube units during the freezing of magnesium chloride hexahydrate (MgCl2 · 6H2O) used as a phase-change material (PCM) with a melting temperature of 116.7 °C. The effects on the heat-transfer characteristics have been determined of the inlet temperature and the flow rate of air used as the heat-transfer fluid (HTF). With the unfinned-tube unit, the heat-transfer coefficients obtained between the PCM and the tube are larger than the calculated values based on the theory of steady-state heat conduction due to the dendritical crystal growth of PCM. The ratio of the heat-transfer coefficient of the finned-to the unfinned-tube systems is about 3.5 within the finned section and decreases gradually far from the finned section with an increase in crystal volume. The total amounts of heat recovered have been correlated in terms of the Fourier, Stefan, and Reynolds numbers to provide basic design data for circular finned- and unfinned-tube heat-storage units.
Date: 1992
References: View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/036054429290004J
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:17:y:1992:i:12:p:1153-1164
DOI: 10.1016/0360-5442(92)90004-J
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().