Harvesting thermoelectric energy from railway track
Mingyuan Gao,
Chengguang Su,
Jianli Cong,
Fan Yang,
Yifeng Wang and
Ping Wang
Energy, 2019, vol. 180, issue C, 315-329
Abstract:
This study aims to develop a prototype for harvesting thermoelectric energy from railway track. By capturing the existing thermal energy in railway tracks, this technology helps power rail-side sensors in off-grid and remote areas without depleting natural resources. In low latitudes such as southern China, the temperature of railway tracks can reach 57 °C due to solar radiation. However, at a relatively shallow depth (200 mm), the substratum below the track foundation (e.g., soils) has a lower temperature (i.e., 15 °C–26 °C). This temperature difference can be used to generate electricity through a thermoelectric generator (TEG). The proposed approach captures thermal energy from the railway track and transfers the energy to the TEG prototype beneath the bottom of rails. Evaluation of the prototype is conducted by finite volume analysis, field test, and laboratory experiment. The results indicate that the TEG prototype can produce 5.8 mW–316.8 mW of power across a resistant load at thermal gradient from 8 °C to 29.2 °C. A DC-DC buck-booster circuit with lithium battery management is developed to charge the batteries by the harvested thermal energy. The system operates at a low startup voltage of 0.9 V and its conversion efficiency is larger than 60%.
Keywords: Thermoelectric; Energy harvesting; Railway track; Temperature chamber; DC-DC (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219309648
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:180:y:2019:i:c:p:315-329
DOI: 10.1016/j.energy.2019.05.087
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().