One-step synthesis of biomass activated char supported copper nanoparticles for catalytic cracking of biomass primary tar
Feiqiang Guo,
Kuangye Peng,
Shuang Liang,
Xiaopeng Jia,
Xiaochen Jiang and
Lin Qian
Energy, 2019, vol. 180, issue C, 584-593
Abstract:
Activated char supported copper nanocatalysts were synthesized directly by one-step pyrolysis of CuCl2 impregnated biomass together with ZnCl2 as activation agent and applied to the cracking of biomass primary tar in a dual-stage reactor. The characterization of the obtained catalysts using XRD, SEM-EDX, TEM and N2 adsorption-desorption indicated CuCl2 can be reduced to Cu0 nanoparticles as active sites, and the presence of ZnCl2 can significantly enlarge the surface area of biomass char to improve the dispersion of copper nanoparticles. A large number of micropores and mesopores were formed during the synthesis process, which also helps to adsorb tar molecules and prolong the reaction time. The prepared nanocatalysts exhibited excellent catalytic activity in the cracking of primary biomass tar as a result of the combining effect of CuCl2 and ZnCl2, and a high tar conversion efficiency of 94.5% was obtained using RHC-1.0Cu1·0Zn at 800 °C. The yields of H2, CH4, CO and the total gas product increased significantly as a result of the tar reforming reactions using the activated char supported catalysts. GC-MS analysis illustrated that the biomass primary tar was mainly decomposed into oxygenated aromatic compounds and light tar compounds over the biomass char supported copper nanocatalysts.
Keywords: Rice husk; Tar conversion; Char-supported catalyst; Copper; Zinc (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219309971
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:180:y:2019:i:c:p:584-593
DOI: 10.1016/j.energy.2019.05.115
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().