EconPapers    
Economics at your fingertips  
 

Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine

Pathikrit Bhowmick, A.K. Jeevanantham, B. Ashok, K. Nanthagopal, D. Arumuga Perumal, V. Karthickeyan, K.C. Vora and Aatmesh Jain

Energy, 2019, vol. 181, issue C, 1094-1113

Abstract: Biodiesel appears as a replenishable and sustainable energy source and can be used a direct replacement to petro-diesel without any major transformations in ongoing diesel engines. This work concentrates on production of Calophyllum Inophyllum biodiesel (CIB) and preparing 10% blend (CIB10) sample to investigate the effects of varying the injection strategies and exhaust gas recirculation (EGR) in common-rail direct injection engine. The experimental results shows that 10% of pilot fuel and 90% main injection strategy (B10@P10-M90) is superior among all others injection strategies with respect to pure diesel. B10@P10-M90 fuel injection strategy produces the maximum efficiency of 35.8% and lowest fuel consumption of 0.25 kg/kWh compared to all the injection strategies. The carbon monoxide (CO) and hydrocarbon (HC) emissions are also found to be quite low compared to all the other test samples including pure diesel. However B10@P10-M90 results in higher average oxides of nitrogen (NOx) emission which is 18.9% higher in contrast to conventional diesel at full load condition. With the implementation of 10% and 20% EGR with B10@P10-M90, the average NOx emissions decreased by 14.4% and 27.6% respectively compared to B10@P10-M90 without any EGR without significant loss in the performance of the existing diesel engine.

Keywords: Calophyllum inophyllum; CRDI; Injection strategy; Pilot injection; Main injection; EGR (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219311387
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:181:y:2019:i:c:p:1094-1113

DOI: 10.1016/j.energy.2019.06.014

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:1094-1113