Techno-economic assessment of hydrogen production processes based on various natural gas chemical looping systems with carbon capture
Dora-Andreea Chisalita and
Calin-Cristian Cormos
Energy, 2019, vol. 181, issue C, 331-344
Abstract:
Hydrogen is regarded as a promising energy carrier with several key advantages for future low carbon applications (e.g. no greenhouse gas emission at the point of use, higher energy conversion efficiency). This paper is assessing from a techno-economic point of view, three chemical looping processes suitable for hydrogen production generating high purity hydrogen corresponding to 300 MW thermal output, with a carbon capture rate of at least 90%: i) chemical looping hydrogen production (CLH), ii) sorption enhanced reforming (SER), iii) sorption enhanced chemical-looping reforming (SECLR). Key techno-economic performance indicators were evaluated and compared amongst each other and against a conventional natural gas reforming technology without/with carbon capture by chemical gas-liquid absorption using alkanolamines. The results show that CLH using iron-based (i.e. ilmenite) oxygen carrier seems to be the most promising hydrogen production technology amongst the evaluated systems having the highest energy efficiency at CCR>99%, lower operating and maintenance (O&M) costs, with a hydrogen production cost of 41.84 €/MWh compared to 42.43 €/MWh for no capture conventional reforming and 44.58 €/MWh for amine-based capture with 70% CCR, at a CO2 emissions avoidance cost of 19.46 €/tCO2.
Keywords: Hydrogen production; Carbon capture and storage; Chemical looping systems; Techno-economic evaluation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219310618
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:181:y:2019:i:c:p:331-344
DOI: 10.1016/j.energy.2019.05.179
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().