The effects of temperature and molten salt on solar pyrolysis of lignite
Xiao He,
Kuo Zeng,
Yingpu Xie,
Gilles Flamant,
Haiping Yang,
Xinyi Yang,
Ange Nzihou,
Anqing Zheng,
Zhi Ding and
Hanping Chen
Energy, 2019, vol. 181, issue C, 407-416
Abstract:
Molten salt pyrolysis driven by concentrated solar radiation is well positioned to utilize solar energy and lignite effectively. This study focused on the effects of temperature (500, 600, 700 and 800 °C) and molten carbonate salt (Li2CO3-Na2CO3-K2CO3) on properties of char obtained from lignite pyrolysis, as well as gas and tar products for revealing their formation mechanism and transformation process. Molten salt pyrolysis of HulunBuir lignite produced more gas products and less char compared to conventional pyrolysis owing to the enhanced heat transfer and catalytic effect of molten salt. The char yield decreased from 58.4% to 43.4%, and the gas yield (especially CO2, H2 and CO) increased from 28.3% to 46.1% at 800 °C. CO2, CO and H2 production increased about 60.43%, 103.42% and 65.2% at 800 °C, respectively. Additionally, the presence of molten salt improved the tar quality with more hydrocarbon content (maximum increase of 5.8%) and less oxygenated compounds. The structure and reactivity relationship of char was characterized by XRD, BET, SEM, FTIR, Raman spectroscopy and TGA. Molten salt generated char had a higher reactivity due to the increase of disorder, surface area, microporosity (maximum of 71.74%) and active sites.
Keywords: Solar pyrolysis; Molten salt; Lignite; Char properties; Temperature (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219310631
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:181:y:2019:i:c:p:407-416
DOI: 10.1016/j.energy.2019.05.181
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().