Township-based bioenergy systems for distributed energy supply and efficient household waste re-utilisation: Techno-economic and environmental feasibility
Simon Ascher,
Ian Watson,
Xiaonan Wang and
Siming You
Energy, 2019, vol. 181, issue C, 455-467
Abstract:
Sustainable waste management and climate change have been two of the major challenges worldwide. This study designed township-based bioenergy systems to treat solid waste in Glasgow based on anaerobic digestion and gasification technologies. The economic feasibility and environmental impacts (i.e. global warming potential, eutrophication potential, and acidification potential) were evaluated using Monte Carlo simulation-based cost-benefit analysis and life cycle assessment. It was found that township-based bioenergy systems could save over 300 kg of CO2 per tonne of municipal solid waste treated when biogenic carbon is excluded. It was shown that the proposed systems have profitability chances ranging from 68 to 98%, when the sale of by-products (digestate and biochar) is considered. This study also explored the effects of by-product selling and carbon tax on the economic feasibility of township-based bioenergy systems. The township-based bioenergy system can satisfy 20–23% of electricity demands and 4–5% of heat demands of each township served. The study can facilitate investors and policymakers to make informed decisions about planning distributed Waste-to-Energy (WtE) systems.
Keywords: Gasification; Anaerobic digestion; Life cycle assessment; Cost-benefit analysis; Municipal solid waste; Distributed bioenergy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219310734
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:181:y:2019:i:c:p:455-467
DOI: 10.1016/j.energy.2019.05.191
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().