Experimental investigation on thermal and combustion performance of a combustor with microchannel cooling
Daxiang Deng,
Yanlin Xie,
Liang Chen,
Guang Pi and
Yue Huang
Energy, 2019, vol. 181, issue C, 954-963
Abstract:
Microchannel cooling provides an efficient thermal management method for regenerative cooling systems of advanced areo engines. In this study, a prototype combustor with microchannel cooling passages in the walls is experimentally developed. Combustion tests are systematically conducted in a range of air inlet temperature (30–70 °C), equivalence ratios (0.8–1.2) and flow rates of coolant (100–300 kg/m2s) using liquid fuel of ethanol and air mixture. Comparative studies against a combustor without microchannel cooling are also conducted to assess the feasibility of performance enhancement. The introduction of microchannel cooling was found to induce an 80% reduction of the maximum wall temperatures, and a larger than 90% reduction of the streamline wall temperature gradient. The combustor with microchannel cooling also induced a 1%–3.2% increase of the combustion efficiency and a 0.3%–1.7% reduction of the CO emissions in general compared to that without microchannel cooling. The wall temperatures and combustion efficiency of the combustor with microchannel cooling were found to increase with the increase in air inlet temperatures from 30 to 70 °C, whereas they tended to decrease when the equivalence ratio increased from 0.8 to 1.2. Nevertheless, the flow rate of coolant played a negligible role on the combustion performance of the combustor with microchannel cooling.
Keywords: Combustion; Microchannel cooling; Regenerative cooling; Wall temperature (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219311570
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:181:y:2019:i:c:p:954-963
DOI: 10.1016/j.energy.2019.06.034
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().