Thermal performance enhancement of non-premixed syngas combustion in a partial combustion unit by winged nozzle: Experimental and CFD study
Woon Phui Law and
Jolius Gimbun
Energy, 2019, vol. 182, issue C, 148-158
Abstract:
This paper presents the effect of nozzle assembly design on the performance of a partial combustion unit (PCU) using the scale-adaptive simulation (SAS) and non-intrusive laser measurement techniques. Four different configurations were tested, namely, nozzle without wing and three nozzles with wing, i.e., flat surface wing, semi-sphere hollow wing and bent wingtip. The syngas-oxygen reaction chemistry was calculated using non-premixed flame model incorporated with GRI-MECH 3.0 mechanism. The radiative heat transfer was modelled using the discrete ordinates (DO) model. The simulation was compared with the particle image velocimetry (PIV) and a two-dimensional laser doppler anemometry (LDA) measurement on a scaled-down PCU model. A good agreement between the SAS prediction and experimental measurement was obtained. It was found that the modified nozzle assembly design with a semi-sphere hollow wing yielded the highest combustion temperature owing to the intense turbulence-induced recirculation mixing of oxy-fuel. The modified nozzle assembly design introduced in this work increased the peak outlet combustion temperature up to 18% higher compared to the original design. The finding in this work may useful for design retrofits of a combustion system.
Keywords: Winged nozzle; Combustion; Scale-adaptive simulation; PIV; Laser Doppler anemometry; Turbulence (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219311636
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:182:y:2019:i:c:p:148-158
DOI: 10.1016/j.energy.2019.06.040
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().