Homogenization of solar flux distribution in a carbon aerosol entrapped cavity receiver
Yabin Jin,
Jiabin Fang,
Jinjia Wei,
Mumtaz A. Qaisrani and
Xinhe Wang
Energy, 2019, vol. 182, issue C, 21-36
Abstract:
An uneven heat flux distribution on the receiver's surface can lead to a highly non-uniform temperature distribution and high local temperature on the receiver tubes which results in fatigue failure. In the present work, a carbon aerosol entrapped cavity receiver of “DAHAN” power plant was numerically simulated to achieve homogenized heat flux distribution with improved safety of the receiver. A three-dimensional Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupled model was developed to simulate the radiation-conduction-convection heat transfer in the receiver. Firstly, the MCRT method is used to simulate the solar heat flux distribution on the surface of the receiver. Then, the thermal performance and heat losses in the receiver were investigated by the coupled model. Finally, the levelized cost of energy (LCOE) was calculated and stress analysis was performed to predict the lifespan of the receiver. Moreover, with this strategy, the peak solar heat flux on the back panel significantly dropped from 290 kW/m2 to 135 kW/m2, while the peak temperature dropped from 652K to 620K. Carbon aerosol particle slightly decreases the thermal performance of the receiver. However, it decreases stress concentration on the receiver panels. Also, the economic analysis revealed that carbon aerosol entrapped receiver is more economical.
Keywords: CSP cavity receiver; Non-uniform temperature distribution; MRCT -FVM coupled model, Coupled photo-thermal convection (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219311326
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:182:y:2019:i:c:p:21-36
DOI: 10.1016/j.energy.2019.06.005
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().