EconPapers    
Economics at your fingertips  
 

Modified finite volumes method for the simulation of dynamic district heating networks

Manuel Betancourt Schwarz, Mohamed Tahar Mabrouk, Carlos Santo Silva, Pierrick Haurant and Bruno Lacarrière

Energy, 2019, vol. 182, issue C, 954-964

Abstract: District Heating (DH) networks are getting closer to the concept of “Smart Grids” to deal with the contribution of new technologies and paradigms like Renewable Energy Sources, Distributed Generation and Storage, and Low-Temperature District Heating. This requires good anticipation of the system's dynamics with the objective of improving control. This work proposes a model based on the Finite Volumes method for anticipating the dynamics in DH systems. Its application to branched network topologies gives the delay between the change in the settings at the generation points and the time they are perceived by the different substation in the network, which is a prerequisite for system design, operation planning and optimal control. The model is tested in a 6 Node branched network with the main topology elements being represented (junctions, splits, etc.); real demand data is used at the consumption nodes. A comparison between the model developed by the authors and the existing Finite Volumes method is also presented for the proposed topology. These results shed light on the needs and opportunities in DH, mainly for ICT implementation, energy storage location and management, and enhanced control in the smart energy networks context.

Keywords: District heating; Smart thermal networks; Transient modeling. finite volumes (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219311612
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:182:y:2019:i:c:p:954-964

DOI: 10.1016/j.energy.2019.06.038

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:182:y:2019:i:c:p:954-964