EconPapers    
Economics at your fingertips  
 

Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition

José Loyola-Fuentes and Robin Smith

Energy, 2019, vol. 183, issue C, 368-384

Abstract: Fouling is a problem in crude oil refineries. The effect of fouling deposition is particularly significant in the heat exchanger network (or pre-heat train) upstream of the crude oil distillation unit. A wide variety of semi-empirical models are available for predicting the fouling behaviour. These models can be obtained by fitting experimental or industrial operating data to a specific fouling model. When industrial data are used, the effect of measurement error and presence of faulty instruments (or gross errors) should be accounted for. This work presents a new methodology that allows for data reconciliation and gross error detection, together with the estimation of fouling model parameters for a pre-heat train undergoing different fouling mechanisms on the shell and tube-sides. The methodology is tested in a simulated case study. It is shown that the data reconciliation and gross error detection algorithms are able to minimise the measurement errors and to identify the presence of single or multiple faulty instruments. The fouling models for each heat exchanger are estimated using the reconciled data, and the fouling behaviour and thermal performance of the network are predicted and analysed.

Keywords: Heat exchanger network; Optimisation; Energy recovery; Process integration (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219312514
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:183:y:2019:i:c:p:368-384

DOI: 10.1016/j.energy.2019.06.119

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:368-384