Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model
Zirong Yang,
Qing Du,
Zhiwei Jia,
Chunguang Yang and
Kui Jiao
Energy, 2019, vol. 183, issue C, 462-476
Abstract:
Water and heat management remains a major obstacle to the successful commercialization of proton exchange membrane fuel cell (PEMFC), especially at a complicated system level. To investigate the interaction among stack and associated auxiliary subsystems, a comprehensive transient PEMFC system model is developed, including stack, membrane humidifier, electrochemical hydrogen pump, air compressor, and radiator. Each individual sub-model has been rigorously validated against experimental data. The results show that the system performance deteriorates significantly under relatively low operating current densities (0.5 A cm−2). The voltage degradation is inhibited as more product water is generated and subsequently utilized by the humidifier, enhancing the stack inlet gas humidification. Under low operating current densities, increasing the operating temperature of membrane humidifier is unfavorable as it exacerbates the membrane dehydration. The voltage undershoot is observed, which is caused by the mismatch between dynamic changes of membrane water content in fuel cell and that of humidifier. If the temperature of dry air flowing into humidifier is well managed, the membrane dehydration may be avoided and assisted heating methods for humidifier may be unnecessary. Increasing the air stoichiometry is disadvantageous as it leads to more generated water being rapidly purged out of the system.
Keywords: PEMFC system; Operating condition; Membrane dehydration; Water utilization; Thermal management (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219312800
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:183:y:2019:i:c:p:462-476
DOI: 10.1016/j.energy.2019.06.148
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().