EconPapers    
Economics at your fingertips  
 

Theoretical and experimental research on the thermal performance of ocean thermal energy conversion system using the rankine cycle mode

Fengyun Chen, Lei Liu, Jingping Peng, Yunzheng Ge, Haoyu Wu and Weimin Liu

Energy, 2019, vol. 183, issue C, 497-503

Abstract: In this paper theoretical analysis of an ocean thermal energy conversion (OTEC) system was conducted using the Rankine cycle based on the first law of thermodynamics and a mathematical model of components of the system was established. Efficiencies of six types of working fluids were evaluated and compared under the uniform conditions. Finally a 15 kW OTEC plant using the Rankine cycle was constructed and change rules of the thermal cycle efficiency were obtained with various parameters. The results show that by using the Rankine cycle R717 is “the most suitable” for an OTEC system among the selected working fluids. Thermal cycle efficiency initially increases and then decreases with increasing turbine inlet pressure; maximum thermal cycle efficiency was achieved when the turbine inlet and outlet temperature are fixed. Thermal cycle efficiency was 3.2% when the turbine inlet pressure was 0.85 MPa under calculating the conditions. The thermal efficiency decreased with an increase of the condensing temperature under the same turbine inlet pressure. The consistency between the experiment and theoretical results was verified; the experimental value was lower than the theoretical. Meanwhile, this work can provide design data for an OTEC plant and operating experience for an OTEC system was obtained.

Keywords: OTEC; Rankine cycle; Thermal cycle efficiency; Output power; Turbine inlet pressure (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219306279
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:183:y:2019:i:c:p:497-503

DOI: 10.1016/j.energy.2019.04.008

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:497-503