EconPapers    
Economics at your fingertips  
 

Performance improvement of self-humidifying PEM fuel cells using water injection at various start-up conditions

Dowon Cha, Wonseok Yang and Yongchan Kim

Energy, 2019, vol. 183, issue C, 514-524

Abstract: A critical issue in self-humidifying proton electrolyte membrane (PEM) fuel cells is to achieve stable performance during start-up. In this study, the start-up characteristics of self-humidifying PEM fuel cells are investigated at various temperatures and voltages. Aquivion and Nafion are used as electrolytes for the performance comparison. Moreover, to overcome start-up failure, the direct water injection strategy is proposed and tested in the self-humidifying PEM fuel cell according to the injection side and amount of injected water. Generally, Aquivion membranes exhibit better start-up performance than Nafion membranes in the self-humidifying PEM fuel cell owing to its higher water absorption capability. The water injection into the anode side is more effective than that into the cathode side in achieving high stability and steady-state current density in the self-humidifying PEM fuel cells. With the water injection during start-up, the steady-state current density of the self-humidifying PEM fuel cell with Aquivion is 32% on average higher than that with Nafion. In addition, the optimal amount of water injection is dependent on the water absorption capability of the membrane at the start-up conditions.

Keywords: Proton electrolyte membrane fuel cell; Self-humidification; Start-up; Water injection (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219312861
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:183:y:2019:i:c:p:514-524

DOI: 10.1016/j.energy.2019.06.154

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:514-524