The impact of additives on the retention of heavy metals in the bottom ash during RDF incineration
Katarzyna Jagodzińska,
Kazimierz Mroczek,
Katarzyna Nowińska,
Klaudiusz Gołombek and
Sylwester Kalisz
Energy, 2019, vol. 183, issue C, 854-868
Abstract:
Up to now, a few studies on the efficiency of heavy metal(-oid)s capture by a sorbent directly mixed with fuel, have been performed. For this reason, the main objective of the study is to determine whether or not such a solution is effective when RDF is incinerated. The paper presents a two-step analysis of the impact of three sorbents (ammonium sulphate, kaolinite and halloysite) in three dosages (2, 4 and 8 wt%) on heavy metal(-oid)s retention in the bottom ash. 12 heavy metal(-oid)s were taken into consideration - As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, V and Zn. Samples were incinerated in a lab-scale tubular reactor at two temperatures - 900 °C and 1100 °C. The first step of investigation constitutes ICP analysis of heavy metal(-oid)s content in the bottom ash, coupled with SEM/EDS analysis. Afterwards, the second step was to determine the stability of formed additive-heavy metal(-oid)s complexes via leachability tests in neutral and acid environments. The performed research has shown that ammonium sulphate is effective in Cr, Cu and Hg capture, halloysite – in Cd, Co, V and Mn capture, whereas kaolinite – in Pb capture.
Keywords: Kaolinite; Halloysite; Ammonium sulphate; ICP; SEM-EDS; TCLP (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219312940
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:183:y:2019:i:c:p:854-868
DOI: 10.1016/j.energy.2019.06.162
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().